Reinforcement Learning with a Corrupted Reward Channel

نویسندگان

  • Tom Everitt
  • Victoria Krakovna
  • Laurent Orseau
  • Shane Legg
چکیده

No real-world reward function is perfect. Sensory errors and software bugs may result in agents getting higher (or lower) rewards than they should. For example, a reinforcement learning agent may prefer states where a sensory error gives it the maximum reward, but where the true reward is actually small. We formalise this problem as a generalised Markov Decision Problem called Corrupt Reward MDP. Traditional RL methods fare poorly in CRMDPs, even under strong simplifying assumptions and when trying to compensate for the possibly corrupt rewards. Two ways around the problem are investigated. First, by giving the agent richer data, such as in inverse reinforcement learning and semi-supervised reinforcement learning, reward corruption stemming from systematic sensory errors may sometimes be completely managed. Second, by using randomisation to blunt the agent’s optimisation, reward corruption can be partially managed under some assumptions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiagent Reinforcement Learning Dynamic Spectrum Access in Cognitive Radios

A multiuser independent Q-learning method which does not need information interaction is proposed for multiuser dynamic spectrum accessing in cognitive radios. The method adopts self-learning paradigm, in which each CR user performs reinforcement learning only through observing individual performance reward without spending communication resource on information interaction with others. The rewa...

متن کامل

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

Intrinsic Motivation and Reinforcement Learning

Psychologists distinguish between extrinsically motivated behavior, which is behavior undertaken to achieve some externally supplied reward, such as a prize, a high grade, or a high-paying job, and intrinsically motivated behavior, which is behavior done for its own sake. Is an analogous distinction meaningful for machine learning systems? Can we say of a machine learning system that it is moti...

متن کامل

Experiments in Socially Guided Machine Learning: Understanding How Humans Teach

In Socially Guided Machine Learning we explore the ways in which machine learning can more fully take advantage of natural human interaction. In this work we are studying the role real-time human interaction plays in training assistive robots to perform new tasks. We describe an experimental platform, Sophie’s World, and present descriptive analysis of human teaching behavior found in a user st...

متن کامل

Reinforcement learning based feedback control of tumor growth by limiting maximum chemo-drug dose using fuzzy logic

In this paper, a model-free reinforcement learning-based controller is designed to extract a treatment protocol because the design of a model-based controller is complex due to the highly nonlinear dynamics of cancer. The Q-learning algorithm is used to develop an optimal controller for cancer chemotherapy drug dosing. In the Q-learning algorithm, each entry of the Q-table is updated using data...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017